3.52 \(\int \cos ^5(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=125 \[ -\frac{a (4 A+5 B) \sin ^3(c+d x)}{15 d}+\frac{a (4 A+5 B) \sin (c+d x)}{5 d}+\frac{a (A+B) \sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac{3 a (A+B) \sin (c+d x) \cos (c+d x)}{8 d}+\frac{3}{8} a x (A+B)+\frac{a A \sin (c+d x) \cos ^4(c+d x)}{5 d} \]

[Out]

(3*a*(A + B)*x)/8 + (a*(4*A + 5*B)*Sin[c + d*x])/(5*d) + (3*a*(A + B)*Cos[c + d*x]*Sin[c + d*x])/(8*d) + (a*(A
 + B)*Cos[c + d*x]^3*Sin[c + d*x])/(4*d) + (a*A*Cos[c + d*x]^4*Sin[c + d*x])/(5*d) - (a*(4*A + 5*B)*Sin[c + d*
x]^3)/(15*d)

________________________________________________________________________________________

Rubi [A]  time = 0.133528, antiderivative size = 125, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {3996, 3787, 2635, 8, 2633} \[ -\frac{a (4 A+5 B) \sin ^3(c+d x)}{15 d}+\frac{a (4 A+5 B) \sin (c+d x)}{5 d}+\frac{a (A+B) \sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac{3 a (A+B) \sin (c+d x) \cos (c+d x)}{8 d}+\frac{3}{8} a x (A+B)+\frac{a A \sin (c+d x) \cos ^4(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^5*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]),x]

[Out]

(3*a*(A + B)*x)/8 + (a*(4*A + 5*B)*Sin[c + d*x])/(5*d) + (3*a*(A + B)*Cos[c + d*x]*Sin[c + d*x])/(8*d) + (a*(A
 + B)*Cos[c + d*x]^3*Sin[c + d*x])/(4*d) + (a*A*Cos[c + d*x]^4*Sin[c + d*x])/(5*d) - (a*(4*A + 5*B)*Sin[c + d*
x]^3)/(15*d)

Rule 3996

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[(A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*n), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2633

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rubi steps

\begin{align*} \int \cos ^5(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx &=\frac{a A \cos ^4(c+d x) \sin (c+d x)}{5 d}-\frac{1}{5} \int \cos ^4(c+d x) (-5 a (A+B)-a (4 A+5 B) \sec (c+d x)) \, dx\\ &=\frac{a A \cos ^4(c+d x) \sin (c+d x)}{5 d}+(a (A+B)) \int \cos ^4(c+d x) \, dx+\frac{1}{5} (a (4 A+5 B)) \int \cos ^3(c+d x) \, dx\\ &=\frac{a (A+B) \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac{a A \cos ^4(c+d x) \sin (c+d x)}{5 d}+\frac{1}{4} (3 a (A+B)) \int \cos ^2(c+d x) \, dx-\frac{(a (4 A+5 B)) \operatorname{Subst}\left (\int \left (1-x^2\right ) \, dx,x,-\sin (c+d x)\right )}{5 d}\\ &=\frac{a (4 A+5 B) \sin (c+d x)}{5 d}+\frac{3 a (A+B) \cos (c+d x) \sin (c+d x)}{8 d}+\frac{a (A+B) \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac{a A \cos ^4(c+d x) \sin (c+d x)}{5 d}-\frac{a (4 A+5 B) \sin ^3(c+d x)}{15 d}+\frac{1}{8} (3 a (A+B)) \int 1 \, dx\\ &=\frac{3}{8} a (A+B) x+\frac{a (4 A+5 B) \sin (c+d x)}{5 d}+\frac{3 a (A+B) \cos (c+d x) \sin (c+d x)}{8 d}+\frac{a (A+B) \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac{a A \cos ^4(c+d x) \sin (c+d x)}{5 d}-\frac{a (4 A+5 B) \sin ^3(c+d x)}{15 d}\\ \end{align*}

Mathematica [A]  time = 0.243168, size = 77, normalized size = 0.62 \[ \frac{a \left (-160 (2 A+B) \sin ^3(c+d x)+480 (A+B) \sin (c+d x)+15 (A+B) (12 (c+d x)+8 \sin (2 (c+d x))+\sin (4 (c+d x)))+96 A \sin ^5(c+d x)\right )}{480 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^5*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]),x]

[Out]

(a*(480*(A + B)*Sin[c + d*x] - 160*(2*A + B)*Sin[c + d*x]^3 + 96*A*Sin[c + d*x]^5 + 15*(A + B)*(12*(c + d*x) +
 8*Sin[2*(c + d*x)] + Sin[4*(c + d*x)])))/(480*d)

________________________________________________________________________________________

Maple [A]  time = 0.094, size = 128, normalized size = 1. \begin{align*}{\frac{1}{d} \left ({\frac{Aa\sin \left ( dx+c \right ) }{5} \left ({\frac{8}{3}}+ \left ( \cos \left ( dx+c \right ) \right ) ^{4}+{\frac{4\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{3}} \right ) }+Aa \left ({\frac{\sin \left ( dx+c \right ) }{4} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{3}+{\frac{3\,\cos \left ( dx+c \right ) }{2}} \right ) }+{\frac{3\,dx}{8}}+{\frac{3\,c}{8}} \right ) +Ba \left ({\frac{\sin \left ( dx+c \right ) }{4} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{3}+{\frac{3\,\cos \left ( dx+c \right ) }{2}} \right ) }+{\frac{3\,dx}{8}}+{\frac{3\,c}{8}} \right ) +{\frac{Ba \left ( 2+ \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) \sin \left ( dx+c \right ) }{3}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^5*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x)

[Out]

1/d*(1/5*A*a*(8/3+cos(d*x+c)^4+4/3*cos(d*x+c)^2)*sin(d*x+c)+A*a*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+
3/8*d*x+3/8*c)+B*a*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+3/8*d*x+3/8*c)+1/3*B*a*(2+cos(d*x+c)^2)*sin(d
*x+c))

________________________________________________________________________________________

Maxima [A]  time = 0.988108, size = 167, normalized size = 1.34 \begin{align*} \frac{32 \,{\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} A a + 15 \,{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} A a - 160 \,{\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} B a + 15 \,{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} B a}{480 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

1/480*(32*(3*sin(d*x + c)^5 - 10*sin(d*x + c)^3 + 15*sin(d*x + c))*A*a + 15*(12*d*x + 12*c + sin(4*d*x + 4*c)
+ 8*sin(2*d*x + 2*c))*A*a - 160*(sin(d*x + c)^3 - 3*sin(d*x + c))*B*a + 15*(12*d*x + 12*c + sin(4*d*x + 4*c) +
 8*sin(2*d*x + 2*c))*B*a)/d

________________________________________________________________________________________

Fricas [A]  time = 0.479236, size = 239, normalized size = 1.91 \begin{align*} \frac{45 \,{\left (A + B\right )} a d x +{\left (24 \, A a \cos \left (d x + c\right )^{4} + 30 \,{\left (A + B\right )} a \cos \left (d x + c\right )^{3} + 8 \,{\left (4 \, A + 5 \, B\right )} a \cos \left (d x + c\right )^{2} + 45 \,{\left (A + B\right )} a \cos \left (d x + c\right ) + 16 \,{\left (4 \, A + 5 \, B\right )} a\right )} \sin \left (d x + c\right )}{120 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/120*(45*(A + B)*a*d*x + (24*A*a*cos(d*x + c)^4 + 30*(A + B)*a*cos(d*x + c)^3 + 8*(4*A + 5*B)*a*cos(d*x + c)^
2 + 45*(A + B)*a*cos(d*x + c) + 16*(4*A + 5*B)*a)*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**5*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.24219, size = 248, normalized size = 1.98 \begin{align*} \frac{45 \,{\left (A a + B a\right )}{\left (d x + c\right )} + \frac{2 \,{\left (45 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9} + 45 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9} + 130 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 290 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 464 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 400 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 190 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 350 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 195 \, A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 195 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{5}}}{120 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

1/120*(45*(A*a + B*a)*(d*x + c) + 2*(45*A*a*tan(1/2*d*x + 1/2*c)^9 + 45*B*a*tan(1/2*d*x + 1/2*c)^9 + 130*A*a*t
an(1/2*d*x + 1/2*c)^7 + 290*B*a*tan(1/2*d*x + 1/2*c)^7 + 464*A*a*tan(1/2*d*x + 1/2*c)^5 + 400*B*a*tan(1/2*d*x
+ 1/2*c)^5 + 190*A*a*tan(1/2*d*x + 1/2*c)^3 + 350*B*a*tan(1/2*d*x + 1/2*c)^3 + 195*A*a*tan(1/2*d*x + 1/2*c) +
195*B*a*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)^5)/d